70 research outputs found

    Motor planning brings human primary somatosensory cortex into action-specific preparatory states

    Get PDF
    Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons

    Mapping the Integration of Sensory Information across Fingers in Human Sensorimotor Cortex

    Get PDF
    The integration of somatosensory signals across fingers is essential for dexterous object manipulation. Previous experiments suggest that this integration occurs in neural populations in the primary somatosensory cortex (S1). However, the integration process has not been fully characterized, as previous studies have mainly used 2-finger stimulation paradigms. Here, we addressed this gap by stimulating all 31 single- and multifinger combinations. We measured population-wide activity patterns evoked during finger stimulation in human S1 and primary motor cortex (M1) using 7T fMRI in female and male participants. Using multivariate fMRI analyses, we found clear evidence of unique nonlinear interactions between fingers. In Brodmann area (BA) 3b, interactions predominantly occurred between pairs of neighboring fingers. In BA 2, however, we found equally strong interactions between spatially distant fingers, as well as interactions between finger triplets and quadruplets. We additionally observed strong interactions in the hand area of M1. In both M1 and S1, these nonlinear interactions did not reflect a general suppression of overall activity, suggesting instead that the interactions we observed reflect rich, nonlinear integration of sensory inputs from the fingers. We suggest that this nonlinear finger integration allows for a highly flexible mapping from finger sensory inputs to motor responses that facilitates dexterous object manipulation.SIGNIFICANCE STATEMENT Processing of somatosensory information in primary somatosensory cortex (S1) is essential for dexterous object manipulation. To successfully handle an object, the sensorimotor system needs to detect complex patterns of haptic information, which requires the nonlinear integration of sensory inputs across multiple fingers. Using multivariate fMRI analyses, we characterized brain activity patterns evoked by stimulating all single- and multifinger combinations. We report that progressively stronger multifinger interactions emerge in posterior S1 and in the primary motor cortex (M1), with interactions arising between inputs from neighboring and spatially distant fingers. Our results suggest that S1 and M1 provide the neural substrate necessary to support a flexible mapping from sensory inputs to motor responses of the hand

    Variational representational similarity analysis

    Get PDF
    © 2019 The Authors This technical note describes a variational or Bayesian implementation of representational similarity analysis (RSA) and pattern component modelling (PCM). It considers RSA and PCM as Bayesian model comparison procedures that assess the evidence for stimulus or condition-specific patterns of responses distributed over voxels or channels. On this view, one can use standard variational inference procedures to quantify the contributions of particular patterns to the data, by evaluating second-order parameters or hyperparameters. Crucially, this allows one to use parametric empirical Bayes (PEB) to infer which patterns are consistent among subjects. At the between-subject level, one can then assess the evidence for different (combinations of) hypotheses about condition-specific effects using Bayesian model comparison. Alternatively, one can select a single hypothesis that best explains the pattern of responses using Bayesian model selection. This note rehearses the technical aspects of within and between-subject RSA using a worked example, as implemented in the Statistical Parametric Mapping (SPM) software. En route, we highlight the connection between univariate and multivariate analyses of neuroimaging data and the sorts of analyses that are possible using component modelling and representational similarity analysis

    The planning horizon for movement sequences

    Get PDF
    When performing a long chain of actions in rapid sequence, future movements need to be planned concur-rently with ongoing action. However, how far ahead we plan, and whether this ability improves with practice, is currently unknown. Here, we designed an experiment in which healthy volunteers produced sequences of 14 finger presses quickly and accurately on a keyboard in response to numerical stimuli. On every trial, participants were only shown a fixed number of stimuli ahead of the current keypress. The size of this viewing window varied between 1 (next digit revealed with the pressing of the current key) and 14 (full view of the sequence). Participants practiced the task for 5 days, and their performance was continuously assessed on random sequences. Our results indicate that participants used the available visual information to plan multiple actions into the future, but that the planning horizon was limited: receiving information about more than three movements ahead did not result in faster sequence production. Over the course of practice, we found larger performance improvements for larger viewing windows and an expansion of the planning horizon. These find-ings suggest that the ability to plan future responses during ongoing movement constitutes an important as-pect of skillful movement. Based on the results, we propose a framework to investigate the neuronal processes underlying simultaneous planning and execution

    The role of feedback in the production of skilled finger sequences

    Get PDF
    Actions involving fine control of the hand, for example, grasping an object, rely heavily on sensory information from the fingertips. Although the integration of feedback during the execution of individual movements is well understood, less is known about the use of sensory feedback in the control of skilled movement sequences. To address this gap, we trained participants to produce sequences of finger movements on a keyboard-like device over a 4-day training period. Participants received haptic, visual, and auditory feedback indicating the occurrence of each finger press. We then either transiently delayed or advanced the feedback for a single press by a small amount of time (30 or 60 ms). We observed that participants rapidly adjusted their ongoing finger press by either accelerating or prolonging the ongoing press, in accordance with the direction of the perturbation. Furthermore, we could show that this rapid behavioral modulation was driven by haptic feedback. Although these feedback-driven adjustments reduced in size with practice, they were still clearly present at the end of training. In contrast to the directionally specific effect we observed on the perturbed press, a feedback perturbation resulted in a delayed onset of the subsequent presses irrespective of perturbation direction or feedback modality. This observation is consistent with a hierarchical organization of even very skilled and fast movement sequences, with different levels reacting distinctly to sensory perturbations. NEW & NOTEWORTHY Sensory feedback is important during the execution of a movement. However, little is known about how sensory feedback is used during the production of movement sequences. Here, we show two distinct feedback processes in the execution of fast finger movement sequences. By transiently delaying or advancing the feedback of a single press within a sequence, we observed a directionally specific effect on the perturbed press and a directionally non-specific effect on the subsequent presses

    Structure of population activity in primary motor cortex for single finger flexion and extension

    Get PDF
    Copyright © 2020 the authors How is the primary motor cortex (M1) organized to control fine finger movements? We investigated the population activity in M1 for single finger flexion and extension, using 7T functional magnetic resonance imaging (fMRI) in female and male human participants and compared these results to the neural spiking patterns recorded in two male monkeys performing the identical task. fMRI activity patterns were distinct for movements of different fingers, but were quite similar for flexion and extension of the same finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and directions, which is similar to what was found for muscular activity patterns. The discrepancy between fMRI and electrophysiological measurements can be explained by two (non-mutually exclusive) characteristics of the organization of finger flexion and extension movements. Given that fMRI reflects predominantly input and recurrent activity, the results can be explained by an architecture in which neural populations that control flexion or extension of the same finger produce distinct outputs, but interact tightly with each other and receive similar inputs. Additionally, neurons tuned to different movement directions for the same finger (or combination of fingers) may cluster closely together, while neurons that control different finger combinations may be more spatially separated. When measuring this organization with fMRI at a coarse spatial scale, the activity patterns for flexion and extension of the same finger would appear very similar. Overall, we suggest that the discrepancy between fMRI and electrophysiological measurements provides new insights into the general organization of fine finger movements in M1

    Does ipsilateral remapping following hand loss impact motor control of the intact hand?

    Get PDF
    What happens once a cortical territory becomes functionally redundant? We studied how the brain and behaviour change for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that in amputees, but not in one-handers, there is increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demand. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased, however this did not match any noticeable improvement in their task performance. More advanced multivariate fMRI analysis showed that amputees had stronger and more typical representation – relative to controls’ contralateral hand representation – compared to one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life

    Sharing voxelwise neuroimaging results from rhesus monkeys and other species with Neurovault

    Get PDF
    © 2020 The Authors Animal neuroimaging studies can provide unique insights into brain structure and function, and can be leveraged to bridge the gap between animal and human neuroscience. In part, this power comes from the ability to combine mechanistic interventions with brain-wide neuroimaging. Due to their phylogenetic proximity to humans, nonhuman primate neuroimaging holds particular promise. Because nonhuman primate neuroimaging studies are often underpowered, there is a great need to share data amongst translational researchers. Data sharing efforts have been limited, however, by the lack of standardized tools and repositories through which nonhuman neuroimaging data can easily be archived and accessed. Here, we provide an extension of the Neurovault framework to enable sharing of statistical maps and related voxelwise neuroimaging data from other species and template-spaces. Neurovault, which was previously limited to human neuroimaging data, now allows researchers to easily upload and share nonhuman primate neuroimaging results. This promises to facilitate open, integrative, cross-species science while affording researchers the increased statistical power provided by data aggregation. In addition, the Neurovault code-base now enables the addition of other species and template-spaces. Together, these advances promise to bring neuroimaging data sharing to research in other species, for supplemental data, location-based atlases, and data that would otherwise be relegated to a file-drawer . As increasing numbers of researchers share their nonhuman neuroimaging data on Neurovault, this resource will enable novel, large-scale, cross-species comparisons that were previously impossible

    Hand use predicts the structure of representations in sensorimotor cortex.

    Get PDF
    Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than single-finger movements. However, the principle by which these representations are organized remains unclear. We analyzed activity patterns during individuated finger movements using functional magnetic resonance imaging (fMRI). Although the spatial layout of finger-specific activity patterns was variable across participants, the relative similarity between any pair of activity patterns was well preserved. This invariant organization was better explained by the correlation structure of everyday hand movements than by correlated muscle activity. This also generalized to an experiment using complex multi-finger movements. Finally, the organizational structure correlated with patterns of involuntary co-contracted finger movements for high-force presses. Together, our results suggest that hand use shapes the relative arrangement of finger-specific activity patterns in sensory-motor cortex
    corecore